domingo, 30 de noviembre de 2008

Nutricion


NUTRICION HUMANA


Nutrición humana, conjunto de procesos mediante los cuales el cuerpo humano transforma y utiliza los nutrientes para obtener energía, así como para mantener y reparar los tejidos. El organismo necesita adquirir un aporte externo de materia, imprescindible para conseguir las sustancias que regulan los procesos metabólicos, la energía necesaria para realizar las numerosas reacciones químicas que constituyen el metabolismo, y la materia necesaria para construir y reparar los tejidos (función reguladora, energética y plástica).

La nutrición es un proceso involuntario que comprende la absorción y las transformaciones que experimentan los nutrientes para convertirse en sustancias químicas sencillas. Sin embargo, la alimentación es un proceso voluntario y consciente mediante el cual el ser humano lleva a cabo la ingestión de alimentos ricos en materia orgánica e inorgánica.

Los nutrientes
Los nutrientes son sustancias químicas que componen los alimentos. Se consideran nutrientes las proteínas, los hidratos de carbono (glúcidos o carbohidratos), los lípidos, las vitaminas, los minerales y el agua.

Se pueden clasificar en macronutrientes y micronutrientes. Los primeros incluyen las proteínas, los lípidos y los hidratos de carbono, que se encuentran en grandes cantidades en los alimentos. Nuestro organismo requiere un aporte importante de macronutrientes y, por lo general, necesita descomponerlos en moléculas más pequeñas para que puedan ser absorbidas y utilizadas. Los micronutrientes comprenden las vitaminas y los minerales, que se encuentran en menor proporción en los alimentos y que, a pesar de ser imprescindibles, las cantidades que nuestro organismo requiere son muy pequeñas.

Los alimentos también contienen agua. Este es el nutriente que nuestro organismo requiere en mayor cantidad (unos dos litros diarios), ya que el agua es la sustancia más abundante del cuerpo humano (65%) y el medio en el que se realizan casi todas las reacciones químicas que tienen lugar en el organismo.

Reciben el nombre de nutrientes esenciales aquellos que el organismo no puede sintetizar o no es capaz de hacerlo en las cantidades que el cuerpo necesita y, por tanto, deben incorporarse necesariamente a través de la dieta. Dentro de los nutrientes esenciales se encuentran algunos aminoácidos, ácidos grasos, vitaminas y minerales.


Energía

Los macronutrientes, es decir, los hidratos de carbono, los lípidos y las proteínas, aportan la energía necesaria para llevar a cabo las reacciones metabólicas. Nuestro organismo utiliza esa energía para realizar las actividades vitales y para mantener una temperatura constante. Mediante el empleo del calorímetro, los científicos han podido determinar las cantidades de energía de los combustibles del cuerpo. Un gramo de hidrato de carbono puro o de proteína pura producen 4 calorías y un gramo de grasa pura produce unas 9 calorías. Para expresar la cantidad de energía que aporta un alimento se utilizan las kilocalorías. En nutrición, la kilocaloría (kcal) se define como la energía calorífica necesaria para elevar la temperatura de 1 kilo de agua de 14,5 a 15,5 ºC. Los hidratos de carbono son los nutrientes más abundantes, mientras que las grasas constituyen el combustible más concentrado y más fácil de almacenar. Si el cuerpo agota sus reservas de grasas e hidratos de carbono, puede utilizar directamente las proteínas de la dieta o descomponer su propio tejido proteico para generar combustible.

En las personas sanas el gasto energético diario es la suma del gasto energético en reposo (basal), es decir, las calorías necesarias para mantener las funciones vitales (1.100 a 1.600 kcal en adultos); el gasto debido a la actividad diaria (entre 500 y 1.500 kcal); el gasto producido por el crecimiento (entre 100 y 300 kcal) y el gasto energético adaptativo que es cuantitativamente poco importante.

Metodos Anticonceptivos


Métodos anticonceptivos

Un método anticonceptivo es una metodología que impide o reduce la posibilidad de que ocurra la fecundación o el embarazo al mantener relaciones sexuales. Por lo general implica acciones, dispositivos o medicamentos en las que cada uno tiene su nivel de efectividad. También se le llama contracepción o anticoncepción, en el sentido de ser formas de control de la natalidad.
La historia del control de la natalidad se remonta al descubrimiento que la relación sexual está asociada al embarazo. Las formas más antiguas incluían el coitus interruptus y la combinación de hierbas con supuestas propiedades contraceptivas o abortivas. El registro más antiguo del control de la natalidad presenta instrucciones anticonceptivas en el Antiguo Egipto.


Tipos de métodos anticonceptivos

Métodos de barrera
Preservativo. Tiene una versión femenina y una masculina.
Diafragma. Una variedad más pequeña de éste es el capuchón cervical.
LeaContraceptivum. Un tamaño, él permanece en lugar debido a la succión.
Los métodos de barrera impiden la entrada de esperma al útero.
Los condones masculinos son recubrimientos delgados de caucho, vinilo o productos naturales que se colocan sobre el pene erecto. Los condones masculinos pueden ser tratados con espermicida para ofrecer mayor protección. Los condones masculinos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro (sólo los condones de látex y vinilo.)
Los condones femeninos son un recubrimiento delgado de plástico poliuretano con aros de poliuretano en extremos opuestos. Estos se introducen en la vagina antes del coito. Al igual que los condones masculinos, los condones femeninos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro

Métodos químicos y hormonales

Espermicidas. Los espermicidas son productos químicos (por lo general, nonoxinol-9) que desactivan o matan a los espermatozoides. Están disponibles en aerosoles (espumas), cremas, tabletas vaginales, supositorios o películas vaginales disolubles. Los espermicidas causan la ruptura de las membranas de los espermatozoides, lo cual disminuye su movimiento (motilidad y movilidad), así como su capacidad de fecundar el óvulo.
La anticoncepción hormonal se puede aplicar de diversas formas.
Vía oral, por la píldora anticonceptiva
Anticonceptivo subdérmico Implante compuesto por una varilla del tamaño de un cerillo que se coloca por debajo de la piel del brazo de la mujer, ofreciendo protección anticonceptiva por tres años sin ser definitivo, el médico que ha recibido capacitación puede retirarlo en cualquier momento retornando la mujer en un tiempo mínimo a la fertilidad.
Anillo vaginal Único de administración vaginal mensual. Es el método más innovador en anticoncepción femenina: un anillo transparente, suave y flexible que se coloca por la misma usuaria por vía vaginal liberando diariamente las dosis más bajas de hormonas.
Píldora trifásica Método anticonceptivo altamente eficaz de dosis hormonales bajas con un balance hormonal suave y escalonado que imita al ciclo fisiológico de la mujer en forma secuencial progresiva etapa reproductiva brindando estricto control del ciclo, además reduce la grasa facial. También puede ser indicado para el tratamiento de acné leve a moderado.
Píldora 0 estrógenos. Píldora anticonceptiva libre de estrógenos, recomendada para mujeres que no pueden o no desean tomarlos; la dosis hormonal es tan ligera que entre otras indicaciones es la única píldora recetada durante la lactancia.
Píldora del día después Método hormonal de uso ocasional. La anticoncepción de emergencia, se trata de la administración de un producto hormonal no abortivo que evita la ovulación y de esta forma previene el embarazo en aquellas mujeres que tuvieron relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección, incluyendo los casos de violación.
Aunque este tratamiento se conoce también como "la píldora del día siguiente", el término puede ser engañoso pues debe utilizarse inmediatamente después de tener relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección; puede tomarse en un periodo de hasta 72 horas, sin embargo la sugerencia es que la mujer tome 2 píldoras en una sola toma inmediatamente.
También hay anticoncepción hormonal que suprime durante la regla.
Actualmente la anticoncepción hormonal masculina está en desarrollo.
Parches anticonceptivos.
Mediante anillos vaginales.

Método combinado

Considerado por muchos como el método anticonceptivo por excelencia, debido a su alta efectividad (similar a la píldora) y a que no posee muchos de los cuestionamientos religiosos de la píldora. Consiste en combinar el uso de preservativo masculino con una crema espermaticida (eg. Delfen). La crema se coloca con un aplicador especial que viene con el envase y el hombre utiliza el preservativo de la manera habitual. Tiene la ventaja agregada de lubricar el canal vaginal y así facilitar la penetración.

Dispositivo intrauterino (DIU)
Es un método que, mediante la colocación en el interior del útero de un dispositivo plástico con elementos metálicos (ej. cobre), se produce una alteración del microclima intrauterino que dificulta de gran manera la fecundación y también la implantación del óvulo fecundado. Este, sin embargo, no ha demostrado ser 100% eficiente, ya que se han dado casos especiales en donde la mujer, pese a tener el método anticonceptivo ya mencionado, se embaraza y da a luz un niño con el aparato incrustado en alguna parte del cuerpo.

Métodos naturales

Los métodos naturales de conocimiento de la fertilidad, se basan en la observación de síntomas asociados a los procesos fisiológicos que dan lugar a la ovulación y a la adaptación del acto sexual a las fases fértiles o infértiles del ciclo menstrual en función de que se desee o no una concepción, sin el uso de fármacos, procedimientos mecánicos ni quirúrgicos. Algunos métodos predictivos son aún enseñados con cierta preferencia en las escuelas ginecológicas, como el método de Ogino-Knauss o método del ciclo, mientras que otras técnicas, tan ancestrales como el Coitus interruptus tienen hoy en día una fiabilidad que es similar a la de otros métodos no quirúrgicos
Otros métodos naturales están basados en la conciencia de la fertilidad, es decir, la mujer observa con atención y registra los signos de fertilidad en su cuerpo para determinar las fases fértiles o infértiles. Los síntomas específicos caen en tres categorías: cambios en temperatura basal, en el moco cervical y la posición cervical. El registrar tanto la temperatura basal como otro signo primario, se conoce como el método sintotermal. Otras metodologías incluyen el monitoreo de los niveles en orina de estrógeno y LH a lo largo del ciclo menstrual.
La Organización Mundial de la Salud clasifica los métodos modernos de planificación familiar natural como buenos o muy buenos, con valores de índice de Pearl menores de 1. La Sociedad Española de Ginecología y Obstetricia ha publicado un documento consenso sobre los métodos naturales de PFN.
Estos métodos de planificación familiar son apoyados y promovidos por la Iglesia Católica para la vivencia y el ejercicio de lo que esa institución denomina una paternidad responsable, como queda reflejado en la Encíclica Humanae Vitae. Son métodos que, para que puedan ser utilizados como métodos seguros de control de la fertilidad, requieren cierto grado de disciplina en la autoobservación/anotación y un correcto aprendizaje con materiales y personal bien preparado. Una crítica a estos métodos es la de que no previenen el SIDA o cualquier otra enfermedad de transmisión sexual, ya que al igual que la píldora anticonceptiva, el anillo vaginal y otros métodos no naturales, que implican contacto físico directo, no se protegen de dichas enfermedades.
De los métodos naturales no son recomendables el método Ogino/Knauss ni el coitus interruptus por falta de eficacia. En cuanto a los métodos modernos, el más eficaz es el sintotérmico con doble control, significativamente superior en eficacia sobre el Método de la Ovulación.

Métodos simples

Temperatura basal: El método de la temperatura basal se sirve del aumento que la progesterona induce en la temperatura corporal interna de la mujer durante la ovulación y determina, una vez diagnosticada, infertilidad postovulatoria. Para ello la mujer deberá determinar la temperatura corporal interna a lo largo del ciclo menstrual. El método de la temperatura basal estricto circunscribe el periodo de infertilidad a los días posteriores a la subida de temperatura exclusivamente. El método de la temperatura basal extendido define, cumplidas ciertas condiciones, 6 días de infertilidad preovulatoria. El método de la temperatura basal es altamente fiable en el periodo postovulatorio, y supone la base de la mayoría de los métodos naturales modernos. Sin embargo tiene limitaciones a la hora de determinar la infertilidad preovulatoria.
Método de la ovulación (método Billings y otros): El método de la ovulación se basa en la observación diaria de los cambios del moco cervical a lo largo del ciclo femenino, cambios que se asocian a los aumentos en los niveles de estrógenos previos al momento de la ovulación. Normalmente, las fases de infertilidad de la mujer se caracterizan por una ausencia de moco cervical visible y una sensación de sequedad vaginal. Conforme se acerca el momento de la ovulación el moco cervical se hace a lo largo de varios días y de forma progresiva, cada vez más líquido, elástico y transparente. Próximo al momento de la ovulación se produce el llamado pico de moco caracterizado por un cambio abrupto de las propiedades el moco y su posible desaparición. El moco cervical es un signo de fertilidad y por ello su observación puede ser utilizado para el control de la fertilidad.La confiabilidad es superior al 95% en varios países estudiados.
Aunque, aplicado correctamente, puede ser considerado un método seguro, es inferior al método de la temperatura en fase postovulatoria. Su utilización es especialmente apto para la consecución del embarazo en casos de hipofertilidad ya que permite concentrar las relaciones sexuales en torno al momento de mayores probabilidades de embarazo. Como método anticonceptivo es especialmente inseguro en mujeres con ciclos monofásicos (durante la menarquia o antes de la menopausia).

Métodos compuestos

Método sintotérmico: Combina el método de la temperatura basal, para el diagnóstico de la infertilidad postovulatoria, en combinación con otra serie de síntomas (moco cervical, cuello del útero, entre otros) y cálculos de longitud de ciclos para la determinación de la infertilidad preovulatoria. Permite beneficiarse de la práctica infalibilidad de la temperatura basal a la hora de determinar la infertilidad postovulatoria y aumentar considerablemente la eficacia en periodo preovulatorio. Su eficacia es equivalente a las modernas preparaciones de anovulatorios orales y solamente inferior a la esterilización quirúrgica. Una ventaja adicional es que es un método válido e igualmente eficaz en todas las circunstancias de la vida reproductiva de la mujer (período post-parto, período post-píldora, premenopausia, etc).

Métodos anticonceptivos definitivos o irreversibles
Son parcialmente irreversibles:
Ligadura de trompas, o salpingoclasia. Consiste en ligar las trompas de Falopio con grapas a fin de impedir que el óvulo se implante en el útero o que los espermatozoides se encuentren con él.
Vasectomía. Es una operación quirúrgica para seccionar los conductos deferentes que transportan a los espermatozoides de los testículos al exterior cuando se eyacula. Una vez realizada, los espermatozoides que a diario se producen son reabsorbidos por el organismo. Puesto que el líquido seminal es elaborado en la próstata, la vasectomía no impide la eyaculación. Es un proceso reversible aunque con dificultades.

Métodos de emergencia

Píldora del día después. Tiene bastantes efectos secundarios.
El método de Yuzpe tiene una tasa de fallos de hasta el 2% si la mujer lo ha usado en forma correcta, lo cual representa una disminución considerable del riesgo de embarazo, comparado con el no uso de anticoncepción de emergencia. Dependiendo cuando la mujer utilice las píldoras como anticoncepción de emergencia durante el ciclo menstrual, la combinación puede prevenir la ovulación, fertilización o la implantación, se cree que básicamente modifica el revestimiento endometrial impidiendo la implantación. El método de Yuzpe no es abortivo y no es eficaz cuando el proceso de implantación se ha iniciado.
El aborto no es un método anticonceptivo, porque la concepción ya se ha producido. Además tiene el riesgo de cualquier operación.
De todos estos métodos sólo los preservativos y el femy disminuyen la posibilidad de contraer una enfermedad venérea. En algún caso el diafragma puede evitar algún tipo de infección, pero no es eficaz como método general de prevención.
Los métodos abortivos como la píldora de mifepristona (RU-486) producen una reducción relativa del número de abortos en las estadísticas, pues trasladan los "macro-abortos" a "micro-abortos", es decir, a abortos del embrión por implantarse o recién implantado. El concepto de control de natalidad es más amplio pues incluye al aborto e incluso al infanticidio y no debe confundirse ni con el método anticonceptivo ni con el aborto.

Consideraciones éticas

Algunos métodos anticonceptivos, como el DIU, actúan también al impedir la anidación del preembrión (óvulo ya fecundado) no implantado en el endometrio materno. Es por ello que hay personas que los consideran como métodos anticonceptivos abortivos, y los rechazan, haciendo una distinción sobre los métodos anticonceptivos que consideran como no abortivos (ej. método combinado: preservativo + crema espermicida).

Sexualidad Humana


Sexualidad humana

La sexualidad humana representa el conjunto de comportamientos que conciernen la satisfacción de la necesidad y el deseo sexual. Al igual que los otros primates, los seres humanos utilizan la excitación sexual con fines reproductivos y para el mantenimiento de vínculos sociales, pero le agregan el goce y el placer propio y el del otro. El sexo también desarrolla facetas profundas de la afectividad y la conciencia de la personalidad. En relación a esto, muchas culturas dan un sentido religioso o espiritual al acto sexual, así como ven en ello un método para mejorar (o perder) la salud.
La complejidad de los comportamientos sexuales de los humanos es producto de su cultura, su inteligencia y de sus complejas sociedades, y no están gobernados enteramente por los instintos, como ocurre en casi todos los animales. Sin embargo, el motor base del comportamiento sexual humano siguen siendo los instintos, aunque su forma y expresión dependen de la cultura y de elecciones personales; esto da lugar a una gama muy compleja de comportamientos sexuales. En la especie humana, la mujer lleva culturalmente el peso de la preservación de la especie.
En la sexualidad humana pueden distinguirse aspectos relacionados con la salud, el placer, legales, religiosos, etcétera. El concepto de sexualidad comprende tanto el impulso sexual, dirigido al goce inmediato y a la reproducción, como los diferentes aspectos de la relación psicológica con el propio cuerpo (sentirse hombre, mujer o ambos a la vez) y de las expectativas de rol social. En la vida cotidiana, la sexualidad cumple un papel muy destacado ya que, desde el punto de vista emotivo y de la relación entre las personas, va mucho más allá de la finalidad reproductiva y de las normas o sanciones que estipula la sociedad.



Orientación e identidad sexual

Además de la unión sexual y emocional entre personas de diferente sexo (heterosexualidad), existen relaciones entre personas del mismo sexo (homosexualidad) que —aunque tengan una larga tradición (ya existían en la antigua Grecia y en muchas otras culturas)— en algunos sectores siguen siendo valoradas en la actualidad negativamente y hasta son causa de discriminación social.
La identidad sexual es la conciencia propia e inmutable de pertenecer a un sexo u otro, es decir, ser varón o mujer. La definición de la identidad sexual están implicados multitud de factores, entre los que podemos destacar el psicológico, social y biológico y -dentro de este último- el gonadal, cromosómico, genital y hormonal. En realidad hay 78 factores distintos que se diferencian en sentido masculino o femenino en cualquier persona.
En la mayoría de las ocasiones, los hombres nacen con genitales masculinos y los cromosomas XY, mientras que las mujeres poseen genitales femeninos y dos cromosomas X. Sin embargo, existen personas que no pueden ser clasificadas por estos factores, ya que poseen combinaciones de cromosomas, hormonas y genitales que no siguen las definiciones típicas que se han relacionado con el varón y la mujer. De hecho, algunas investigaciones sugieren que uno de cada cien individuos puede nacer con rasgos intersexuales, o lo que vulgarmente se conoce como hermafrodita.

Instinto
Durante siglos se consideró que la sexualidad en los animales y en los hombres era básicamente de tipo instintivo. En esta creencia se basaron las teorías para fijar las formas no naturales de la sexualidad, entre las que se incluían todas aquellas prácticas no dirigidas a la procreación.
Hoy, sin embargo, sabemos que también algunos mamíferos muy desarrollados como los delfines, e incluso aves como los pingüinos, presentan un comportamiento sexual diferenciado, que incluye además de formas de aparente homosexualidad, variantes de la masturbación y de la violación. La psicología moderna deduce, por tanto, que la sexualidad puede o debe ser aprendida.

Expresiones y desarrollo del comportamiento sexual

Dibujo de pareja hemiseccionada durante el coito; Leonardo da Vinci.
En el límite de las formas ampliamente aceptadas de conductas sexuales, se encuentran las llamadas expresiones del comportamiento sexual; como la masturbación, homosexualidad, éstas hasta no hace poco tiempo eran consideradas parafilias o perversiones de personas degeneradas o moralmente degradadas en gran parte por la influencia religiosa en la sociedad. La evolución en los usos y costumbres y el ensanchamiento del margen de tolerancia ha hecho que estas conductas se admitan como válidas en el marco de los derechos hacia una sexualidad libre.
Sólo en los casos de malestar o de conflicto del propio individuo con sus tendencias, o en aquellos en los que se pone en riesgo la integridad física y moral de terceros, podemos hablar de trastornos sexuales y en estos casos se encuentra la necesidad de tratamiento psicoterapéutico e incluso farmacológico.
La mayor parte de las culturas tienen normas sociales sobre la sexualidad. Por ejemplo, muchas culturas definen la norma sexual como una sexualidad que consiste únicamente en actos sexuales entre un hombre y una mujer casados. Los tabúes sociales o religiosos pueden condicionar considerablemente el desarrollo de una sexualidad sana desde el punto de vista psicológico.
El catolicismo afirma que la sexualidad reducida a la genitalidad degrada a la persona, esta debe abarcar a toda la persona y no sólo a una parte de la misma. La sexualidad es una realidad positiva creada por Dios como expresión de amor y unión entre un hombre y mujer. Se encarna dentro del acuerdo matrimonial.
Su visión es polémica ya que no reconoce o se enfrenta a otros aspectos del sexo como la existencia de la homosexualidad, la masturbación o el uso del preservativo.

Prácticas sexuales
Masturbación: es la excitación de los órganos genitales que se realiza el mismo individuo, u otro, con el objeto de obtener placer sexual, pudiendo llegar o no al orgasmo.
Coito: es la cópula o unión sexual entre dos individuos de distinto o igual sexo.
Sexo oral: es una práctica sexual en la que uno o varios individuos estimula a otro los órganos genitales con los labios y la lengua.
Sexo anal: práctica sexual que involucra la introducción del pene en el ano. La inserción de juguetes sexuales en el ano también es considerado como sexo anal.
Sexo tántrico: es una forma de enseñanza budista e hindú que considera el sexo como una forma de expansión y exploración de la espiritualidad.

Infecciones de transmisión sexual

Artículo principal: Enfermedades de transmisión sexual
vía de transmisión: se transmiten de persona a persona por contacto íntimo (que se produce, casi exclusivamente, durante las relaciones coitales).
Los agentes productores de las infecciones de transmisión sexual incluyen bacterias, virus (como el del herpes), hongos e incluso parásitos, como el ácaro llamado "Arador de la sarna" (Sarcoptes scabiei) o los piojos llamados ladillas (Pedículus pubis).
Véase también: Educación sexual, Niño, Adolescencia, Pubertad, Adulto, y Sexo seguro

Reproducción sexual


El humano utiliza la reproducción sexual heterogámica. En ella, los gametos se diferencian tanto morfológica como fisiológicamente. Uno de ellos es diminuto y móvil, recibiendo el nombre de gameto masculino o microgameto mientras que el otro es grande y sedentario y se denomina gameto femenino o macrogameto.
Control de la natalidad: generalmente basado en la planificación familiar determinado por las prácticas de una pareja que tengan por fin el control de la cantidad de hijos utilizando anticonceptivos.
Además cumple con la función de satisfacción sexual, es decir la búsqueda del placer de uno mismo y del otro, logrando así que la sexualidad sea indispensable para la vida de los seres humanos, en cuanto a su armonía entre la mente, cuerpo y alma.
Véase también: Aborto inducido, Diferencias biológicas hombre - mujer, Aparato reproductor masculino, y Aparato reproductor femenino

Sexología

La sexología es el estudio sistemático de la sexualidad humana y de las cuestiones a ella referidas. Abarca todos los aspectos de la sexualidad.
Estudios destacados
El neurólogo Sigmund Freud postuló la primera teoría sobre el desarrollo sexual progresivo en el niño, con la que pretendía explicar también la construcción de una personalidad normal o anormal en el mismo.
Fase oral: según Freud, el desarrollo sexual se inicia con esta fase o etapa, caracterizada porque el niño obtiene una máxima satisfacción al mamar durante el primer tiempo de vida y luego el placer lo encuentra mordiendo, son sadicocanivasitas.
Fase anal: se divide en explusiva y retentiva, primero ve placer en largar y luego en retener (va desde el año y medio aproximadamente hasta los 3 años).
Fase fálica: en ésta es donde está el conocido complejo de Edipo y se conforma el super yo, solo entran en juego los genitales masculinos (falo)
Fase latente o de reposo: después se inicia la última fase del desarrollo, la genital, con el interés centrado en los órganos sexuales.
La alteración de una de éstas fases conduce, según la teoría de Freud, a la aparición de trastornos específicos sexuales o de la personalidad. Con el paso del tiempo, algunas de las tesis postuladas en su teoría del psicoanálisis han sido rechazadas, en especial sus teorías sobre la envidia del pene y sobre la vida sexual de la mujer.
Informe Kinsey
A partir de los años 30, comenzó a realizarse la investigación sistemática de los fenómenos sexuales. Posteriormente, la sexología, rama interdisciplinar de la psicología, relacionada con la biología y la sociología, tuvo un gran auge al obtener, en algunos casos, el respaldo de la propia sociedad, promovidos por los movimientos de liberación sexual de finales de los años 60 y principios de los años 1970.
Los primeros estudios científicos sobre el comportamiento sexual corresponden al informe Kinsey. En ellos observaron grandes diferencias entre el comportamiento deseable exigido socialmente y el comportamiento real. Asimismo, se observó que no existe una clara separación entre el comportamiento heterosexual y el homosexual ya que, según encuestas de esa época, el 10% de las mujeres y el 28% de los hombres admitían tener comportamientos homosexuales y un 37% de los hombres estar interesados en la homosexualidad.
Masters y Johnson
En la década de los años sesenta, Masters y Johnson investigaron por primera vez en un laboratorio los procesos biológicos de la sexualidad, elaborando un estudio sobre la respuesta sexual humana.
Publicaron sus estudios en un libro titulado The Human Sexual Response (Respuesta Sexual Humana).
Además escribieron un polémico artículo que defendía las relaciones con las personas del mismo sexo, esto según el estudio, era tan placentero y relajante como tener sexo oral y anal a la vez, en el caso de las mujeres una doble penetración las lleva a encontrar el clímax.

Erotismo

El origen del mundo, de Gustave Courbet.
Artículo principal: Erotismo
El erotismo se ocupa de todo lo relacionado con las relaciones sexuales y no simplemente con el acto físico sino también con todas sus proyecciones.
Véase también: Erótica, Pornografía, y Kama Sutra

Legislación

La edad de consentimiento sexual es la edad por debajo de la cual, para propósitos criminales, la violencia se presume legalmente en las relaciones sexuales, sin importar la existencia de cualquier violencia real. En la práctica, el consentimiento real puede acontecer en una edad diferente del consentimiento legal.
Si un adulto tiene relaciones sexuales con un menor que todavía no alcanza la edad de consentimiento sexual, el acto es considerado estupro (un delito sexual de abuso infantil) aunque el menor haya accedido a participar en la relación sexual.
Un caso que ganó atención internacional al principio del año 2007 es el del norteamericano Joshua Ray Widner, de 18 años de edad, quien fue condenado a 10 años de prisión por haber recibido sexo oral de una jovencita de 14 años. La edad de consentimiento en el estado de Georgia, donde ocurrió el acto sexual, es de 16 años.

Genetica y herencia

GENETICA Y HERENCIA
La genética es el estudio de los factores hereditarios o genes. De su transmisión resulta que los hijos se parecen a sus padres más que a otros seres vivientes.
Ese parecido se refiere no sólo a los rasgos de la organización general propios de la clase y especie a la que pertenezca el grupo de progenitores y descendientes, sino a características peculiares de tipo racial o de una variedad determinada; en la especie humana, por ejemplo, se heredan el color del pelo, de los ojos, los grupos sanguíneos, etc.
Desde siempre el hombre se interesó por descubrir el mecanismo hereditario, pero su complejidad es tal que solamente a fines del siglo pasado se pudo conocer el modo de transmisión de los genes, gracias a los estudios del agustino Gregorio Mendel que, en 1856 comenzó una investigación en el huerto de su convento que le llevo al conocimiento de las leyes de la herencia biológica. Realizó sus experimentos en razas de guisantes común, raza que seleccionó y cultivó reiteradamente.
Se ha podido comprobar estudiando escritos de autores anteriores que los hombres tuvieron ya desde la antigüedad algunas ideas sobre la herencia biológica.
Los resultados obtenidos fueron publicados por la Sociedad de Historia Natural de Brunn en 1866, pero tuvieron poca difusión y el mundo científico las pasó por alto. En 1900, fueron redescubiertas las leyes de la herencia, de un modo independiente y simultáneo, por tres investigadores: Hugo de Vries, Karl Correns y Erich Tschermak, que hallaron al rebuscar en la bibliografía la obra de Mendel y tuvieron que ceder a este la prioridad del descubrimiento.
Entre las cuestiones que estudia la genética destacan:
El conocimiento de la naturaleza de los genes.
El conocimiento de las estructuras portadoras de esos genes.
Los mecanismos de transmisión de estos.
La influencia de los genes en el desarrollo y evolución de los organismos.
El material hereditario esta formado por núcleo-proteínas y esta contenido en los cromosomas. Hay casos en que, en lugar de núcleo-proteínas, existen ácidos nucleicos solamente. Pero unidos o no a proteínas, los ácidos nucleicos son los portadores de la herencia biológica en todos los seres vivos. Este es uno de los hallazgos fundamentales de la biología actual.
Los ácidos nucleicos se han conocidos perfectamente gracias a virus y bacterias, dada la unidad biológica estructural y funcional de todos los seres vivos. El ADN y ARN intervienen en las biosíntesis de ellos mismos y de todos los demás componentes celulares, según un código genético que se transmite de padre a hijos.
Mendel utilizó, lo mismo que sus seguidores inmediatos, organismos diplontes procedentes de un cigoto que, al tener dos series de cromosomas, tiene dos series de genes. Pero mucho más sencillo es el estudio en los seres procariontes pues, al ser haploide, falta en ellos la meiosis y tienen una serie única de genes. Sin embargo, por haberse conocido primeramente la herencia mendeliana, se estudiará ésta en primer lugar.


GENÉTICA
LA GENÉTICA estudia la forma como las características de los organismos vivos, sean éstas morfológicas, fisiológicas, bioquímicas o conductuales, se transmiten, se generan y se expresan, de una generación a otra, bajo diferentes condiciones ambientales.
La genética, pues, intenta explicar cómo se heredan y se modifican las características de los seres vivos, que pueden ser de forma (la altura de una planta, el color de sus semillas, la forma de la flor; etc.), fisiológicas (por ejemplo, la constitución de determinada proteína que lleva a cabo una función específica dentro del cuerpo de un animal), e incluso de comportamiento (en la forma de cortejos antes del apareamiento en ciertos grupos de aves, o la forma de aparearse de los mamíferos, etc.). De esta forma, la genética trata de estudiar cómo estas características pasan de padres a hijos, a nietos, etc., y por qué, a su vez, varían generación tras generación.
La genética es la disciplina unificadora de las ciencias biológicas, ya que sus principios generales se aplican a todos los seres vivos. En todas las áreas de la Biología se recurre a los conceptos que gobiernan la herencia, cuando se trata de explicar la variabilidad existente en la naturaleza, así como también cuando el hombre transforma la naturaleza para su beneficio. El mejoramiento de plantas y animales, la comprensión de la patología humana y producción de medicamentos por medio de la biotecnología, son apenas algunos ejemplos.
La genética es la ciencia que se ocupa del estudio de la estructura y función de los genes en los diferentes organismos, así como también del comportamiento de los genes a nivel de poblaciones.
El desarrollo de nuevos métodos para la investigación genética en los últimos años, ha transformado a esta disciplina en el centro de la biología y de la medicina en particular. Así por ejemplo, el estudio de los principios genéticos básicos y sus aplicaciones en el diagnóstico, es de suma importancia en todas las profesiones relacionadas con la salud.
Además de su relevancia teórica para las ciencias biológicas, los principios de la genética tienen importantes aplicaciones prácticas, ya sea en la producción de vegetal, tanto de alimentos como productos de interés industrial o farmaceutico, así como en la salud humana y la produccíon y salud animal.
Genes y Cromosomas:
Los Componentes Básicos de la Vida
Cromosomas La clave de la vida y de la herencia está en el núcleo de la célula, que es el centro que gobierna todas sus actividades.
El núcleo de cada célula sexual humana, contiene 23 cromosomas, que son unos orgánulos filiformes en forma de hilos y cada uno de ellos, tiene una larga molécula enroscada de una sustancia química llamada ADN o Acido desoxirribonucléico, que es la molécula informativa de la vida.
El ADN contiene más o menos 30,000 genes, cada uno de los cuales contiene información precisa sobre las características de la especie humana y las que va a tener la persona de forma particular.
En el momento de la fecundación, cuando los núcleos de las células sexuales se fusionan, se unen los cromosomas en pares y la célula empieza a dividirse en millones de nuevas células que si bien son iguales porque contienen las mismas partes, son diferentes en el contenido genético que contienen y que definen desde tejidos diferentes como es el sanguíneo del óseo o muscular, hasta las características de una persona.
El mundo de los genes es fascinante y gracias a los estudios del genoma humano se ha identificado el papel de cada uno de ellos en la conformación de la persona y hasta se han identificado los que determinarán ciertos problemas de salud en la vida adulta.
Los genes trabajan toda la vida, porque nuestro cuerpo no deja de producir nuevas células para suplir las que mueren, se desgastan o lastiman, por lo que gracias a ellos todos los tejidos de nuestro cuerpo, excepto el nervioso se renueva constantemente.
Pero todo lo relacionado con la genética no podría comprenderse, si no se hubieran descubierto las células madre.
Las células madre, son las que dan origen a todas las demás que formarán los tejidos y órganos del cuerpo, son las que determinan sus funciones y permiten no sólo el desarrollo del cuerpo, sino la regeneración de los tejidos a lo largo de la vida. Sin ellas estaríamos llenos de cicatrices y la mayoría de las enfermedades que sufrimos continuamente no podrían curarse, de hecho, sin la existencia de las células madres no podríamos vivir.
Y es que ellas son capaces de diferenciarse para originar un cierto tipo de célula que constituyen los tejidos fundamentales de los seres humanos, los musculares, óseos, cardíacos, hepáticos, sanguíneos, nerviosos, de la piel y todos los demás y aunque todavía sus mecanismos son un gran misterio que están tratando de resolver los especialistas, esto constituye en este momento una línea de investigación muy fuerte, ya que se piensa que muchos procesos degenerativos se pueden revertir con su manipulación y muchas enfermedades se podrán prevenir.


Genes Cada ser humano tiene aproximadamente 30.000 genes que determinan el crecimiento, el desarrollo y el funcionamiento de nuestros sistemas físicos y bioquímicos. Normalmente, los genes se encuentran distribuidos en 46 cromosomas (23 pares) dentro de nuestras células. Los pares del 1 al 22 son iguales en hombres y mujeres y se conocen como autosomas. El par número 23 está compuesto por los cromosomas que determinan el sexo. Las mujeres tienen dos cromosomas X y los hombres un cromosoma X y un cromosoma Y. Los espermatozoides y las células ováricas son diferentes de las demás células del organismo. Estas células reproductivas tienen sólo 23 cromosomas independientes cada una. Cuando un espermatozoide y un óvulo se combinan, al comienzo del embarazo, forman una célula nueva con 46 cromosomas. El ser humano resultante es genéticamente único y su diseño está determinado por el padre y la madre en partes iguales.


Leyes de Mendel
Conviene aclarar que Mendel, por ser pionero, carecía de los conocimientos actuales sobre la presencia de pares de alelos en los seres vivos y sobre el mecanismo de transmisión de los cromosomas, por lo que esta exposición está basada en la interpretación posterior de los trabajos de Mendel.
A continuación se explican brevemente las leyes de Mendel:
Primera ley de Mendel: A esta ley se le llama también Ley de la uniformidad de los híbridos de la primera generación (F1), y dice que cuando se cruzan dos variedades individuos de raza pura, ambos homocigotos, para un determinado carácter, todos los híbridos de la primera generación son iguales.
Los individuos de esta primera generación filial (F1) son heterocigóticos o híbridos, pues sus genes alelos llevan información de las dos razas puras u homocigóticas: la dominante, que se manifiesta, y la recesiva, que no lo hace..
Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían las semillas amarillas y con una variedad que producía las semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre plantas con semillas amarillas.


Otros casos para la primera ley. La primera ley de Mendel se cumple también para el caso en que un determinado gen dé lugar a una herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche". Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas, como se puede observar a continuación:


Segunda ley de Mendel: A la segunda ley de Mendel también se le llama de la separación o disyunción de los alelos.
Experimento de Mendel. Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción que se indica en la figura. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación.


Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos.
Otros casos para la segunda ley. En el caso de los genes que presentan herencia intermedia, también se cumple el enunciado de la segunda ley. Si tomamos dos plantas de flores rosas de la primera generación filial (F1) y las cruzamos entre sí, se obtienen plantas con flores blancas, rosas y rojas. También en este caso se manifiestan los alelos para el color rojo y blanco, que permanecieron ocultos en la primera generación filial.

Retrocruzamiento
Retrocruzamiento de prueba.
En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo. La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo- del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigótica recesiva (aa).
- Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.
- Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50%.

Tercera ley de Mendel. Se conoce esta ley como la de la herencia independiente de caracteres, y hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.
Experimento de Mendel. Mendel cruzó plantas de guisantes de semilla amarilla y lisa con plantas de semilla verde y rugosa ( Homocigóticas ambas para los dos caracteres).Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados , y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa.Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).
Estas plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas. Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).Asímismo, los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la segunda ley.


TEORÍA CROMOSÓMICA DE LA HERENCIA MENDELIANA
Cuando Mendel realizó sus experimentos, no se conocía la existencia de la molécula de ADN ni, por tanto, que esta se encontrara en los cromosomas.
Los investigadores de finales del siglo pasado y principios del actual elaboraron la teoría cromosómica de la herencia mendeliana, según la cual los genes residen en los cromosomas.
En 1902, Sutton, en EEUU, y Boveri, en Alemania, observaron que había un paralelismo entre la herencia de los factores hereditarios y el comportamiento de los cromosomas durante la meiosis y la fecundación, por lo que dedujeron que los factores hereditarios residían en los cromosomas.
Esta afirmación sirvió de base para la formulación de la teoría cromosómica de la herencia unos años más tarde.
En 1909, Johannsen designó “el factor hereditario” de Mendel con el término gen.
En 1910, Morgan, observó en sus experimentos con la mosca del vinagre que los machos de esta especie tenían tres pares de cromosomas homólogos, llamados autosomas, y un par de cromosomas parecidos, pero no idénticos, a los que designó con las letras X e Y y denominó heterocromosomas o cromosomas sexuales, ya que son los responsables del sexo.
Más tarde, Morgan descubrió que muchos caracteres hereditarios se transmiten juntos, como por ejemplo, el color del cuerpo de la mosca, el color de los ojos, el tamaño de las alas, etc. Después de efectuar numerosos cruces comprobó que había cuatro grupos de genes que se heredaban ligados.
Se llegó a la conclusión de que los genes estaban en los cromosomas y que estos se encontraban en el mismo cromosoma tendían a heredarse juntos, por los que se denominó genes ligados.
Posteriormente, Morgan determinó que los genes se localizan sobre los cromosomas de forma lineal y que el intercambio de fragmentos de cromosomas se corresponde con el fenómeno de la recombinación. También afirmó que los cromosomas conservan la información genética y la transmiten de generación mediante la mitosis.
Todas estas observaciones permitieron a Morgan elaborar la teoría cromosómica de la herencia.
En la actualidad sabemos muchas cosas que desconocían los genetistas de principio de siglo sobre todo que los genes son porciones concretas de ADN. Por ello, hoy nos parece evidente que los genes estén en los cromosomas, ordenados linealmente.



CÓDIGO GENÉTICO
Sabemos que el ADN contiene el código genético que ordena el desarrollo, crecimiento y mantenimiento de los seres vivos.
El ADN está constituido por una doble cadena helicoidal que está formada por parejas de nucleótidos (T-A, C-G) los cuales llevarían inscrito el código genético.Así pues, el bloque genético de un ser vivo ( genoma ) constaría de un conjunto de cromosomas, formados a su vez por eslabones o genes, todos ellos formados por parejas de nucleótidos que contendrían los datos genéticos según su distribución en la cadena.
Ahora bien, ¿Cómo funciona el código genético?
A continuación se exponen resumidas el funcionamiento del código genético:
- Como hemos dicho, los cromosomas constan de genes cada uno de los cuales tiene la misión de influir en un determinado elemento de las células.
- Cada gen consta de una porción de código del cual solo podrá acoplarse a un determinado órgano o elemento de una célula.
- En cada gen podemos distinguir tres características: código, AMP energético y nucleótidos (Timina-Adenina, Citosina-Guanina) y acumuladores-emisores de electrones.
Por lo tanto, y simplificando los procesos, podemos definir que:
“Un gen es un paquete de alimento energético o combustible con un código de acceso para un elemento determinado de la célula”.
La misión de los genes y, por tanto, de ADN (o DNA) es la de "alimentar" y desarrollar a los elementos celulares. Por ejemplo, alinear aminoácidos y cederles la energía para soldarlos (>>OH2) y construir así las proteínas.
La esencia del desarrollo de un ser vivo está en la alimentación energética coordinada de cada uno de sus elementos celulares incluido los elementos inductores de la reproducción celular. Y esta coordinación estará determinada por el ordenamiento de los genes en cada cromosoma y de los cromosomas en el conjunto o cuerpo genético.
Podemos concluir con que:
“La funcionalidad genética consiste en el reparto adecuado de los factores energéticos del crecimiento y desarrollo (o genes) mediante un código particular de acceso para cada elemento que estará insertado tanto en el gen”.
Por lo tanto, el Código Genético representa diferentes posiciones de acoplamiento con otros órganos celulares.
A continuación se puede observar en el dibujo el proceso de desarrollo de la célula madre hasta el órgano a formarse:


A
Adenina
G
Guanina
C
Citosina
T
Timina



HERENCIA. TRANSMISIÓN DE LOS CARACTERES.
Todas las personas presentamos unas características comunes que nos definen como seres humanos. Sin embargo, no hay dos seres humanos exactamente iguales. Las diferencias que se observan entre las distintas personas, por ejemplo en los rasgos de la cara u otros caracteres como el grupo sanguíneo, el color de la piel o el tipo de cabello, son consecuencia directa de la herencia. Otros caracteres, a pesar de ser hereditarios, pueden estar influidos por el ambiente. Así, la altura de un individuo está determinada por la herencia, pero puede variar dependiendo de la alimentación recibida durante su infancia.
Algunos caracteres que exhibimos, como las cicatrices, los adquirimos a lo largo de nuestra vida. No obstante, gran parte de los caracteres que observamos en los individuos son hereditarios, es decir, se transmiten de generación en generación mediante la reproducción. Estos caracteres van apareciendo durante el desarrollo y el crecimiento de un individuo y se manifiestan a lo largo de su vida.
Los caracteres que son el resultado exclusivamente de la acción del ambiente no se transmiten a los hijos y se denominan caracteres adquiridos.
A veces, es difícil determinar si la variación de un carácter es hereditaria o tiene un origen ambiental. Por ejemplo, la estatura de las personas es un carácter hereditario; los hijos de padres altos suelen ser también altos; sin embargo, una correcta alimentación también influye en la estatura alcanzada.
Muchos de los caracteres heredados se manifiestan de una manera diferente según las condiciones ambientales en las que vive o se ha desarrollado un individuo. Sin embargo, las variaciones en los caracteres provocadas por el ambiente se caracterizan por no ser heredables, es decir, por no transmitirse a la descendencia.
Para que la variación de un carácter sea heredable ha de afectar al material hereditario, es decir, a la información que los padres transmiten a los hijos.



Algunas anomalías genéticas tienen una herencia de carácter recesivo. En estos casos son necesarias dos copias del gen recesivo para que la enfermedad se manifieste. Una persona que tiene sólo una copia del gen recesivo es portadora de ese gen pero no manifiesta la enfermedad. En la ilustración, el gen dominante se representa en color verde y el recesivo en azul. En la pareja de la izquierda el padre tiene una copia del gen dominante y otra del gen recesivo. La madre tiene dos copias del gen dominante. Cada padre sólo puede transmitir un gen a los hijos. Los cuatro hijos de esta pareja representan las probabilidades de las distintas combinaciones que pueden surgir. Los hijos de la parte izquierda reciben el gen recesivo de su padre y el dominante de la madre y son, por tanto, portadores. Por tanto hay un 50% de posibilidades de que los niños que nazcan de esta pareja sean portadores. Como ninguno de los hijos puede recibir dos copias del gen recesivo ninguno desarrollará la enfermedad. Cuando los dos padres son portadores, como se muestra en la pareja de la derecha, hay un 25 % de posibilidades de que los niños nazcan con la enfermedad, un 50 % de posibilidades de que los niños sean portadores y un 25 % de posibilidades de que los niños no sean ni portadores ni desarrollen la enfermedad.
Los cromosomas contienen la información genética del organismo. Cada tipo de organismo tiene un número de cromosomas determinado; en la especie humana, por ejemplo, hay 23 pares de cromosomas organizados en 8 grupos según el tamaño y la forma. La mitad de los cromosomas proceden del padre y la otra mitad de la madre. Las diferencias entre individuos reflejan la recombinación genética de estos juegos de cromosomas al pasar de una generación a otra.

BASES FÍSICAS DE LA HERENCIA
CARIOGRAMA


Los cromosomas contienen la información genética del organismo. Cada tipo de organismo tiene un número de cromosomas determinado; en la especie humana, por ejemplo, hay 23 pares de cromosomas organizados en 8 grupos según el tamaño y la forma. La mitad de los cromosomas proceden del padre y la otra mitad de la madre. Las diferencias entre individuos reflejan la recombinación genética de estos juegos de cromosomas al pasar de una generación a otra.

Poco después del redescubrimiento de los trabajos de Mendel, los científicos se dieron cuenta de que los patrones hereditarios que él había descrito eran comparables a la acción de los cromosomas en las células en división, y sugirieron que las unidades mendelianas de la herencia, los genes, se localizaban en los cromosomas. Ello condujo a un estudio profundo de la división celular.

Cada célula procede de la división de otra célula. Todas las células que componen un ser humano derivan de las divisiones sucesivas de una única célula, el cigoto, que se forma a partir de la unión de un óvulo y un espermatozoide. La composición del material genético es idéntica en la mayoría de las células y con respecto al propio cigoto (suponiendo que no se ha producido ninguna mutación). Cada célula de un organismo superior está formada por un material de aspecto gelatinoso, el citoplasma, que contiene numerosas estructuras pequeñas. Este material citoplasmático envuelve un cuerpo prominente denominado núcleo. Cada núcleo contiene cierto número de diminutos cromosomas filamentosos. Ciertos organismos simples, como las algas verde-azuladas y las bacterias, carecen de un núcleo delimitado aunque poseen un citoplasma que contiene uno o más cromosomas.

Morgan contribuyó a los estudios genéticos cuando en 1910 observó diferencias sexuales en la herencia de caracteres, un patrón que se conoce como herencia ligada al sexo.



Determinación del sexo, tipo XX-XY
En los seres humanos el sexo del recién nacido depende del tipo de espermatozoide que realice la fecundación. Si el espermatozoide que fecunda el óvulo es portador del cromosoma X el cigoto resultante dará lugar a una niña (XX) y si el espermatozoide que fecunda al óvulo es portador del cromosoma Y el cigoto dará lugar a un niño (XY). La probabilidad de que nazca un niño o una niña es exactamente la misma.
El espermatozoide y el óvulo humano son las células responsables de la transmisión de los caracteres hereditarios. Poseen una compleja estructura que les permite llevar a cabo el transporte del material genético y la formación del cigoto que dará origen al nuevo individuo con las características de los progenitores.

HERENCIA CITOPLASMÁTICA
Además del núcleo, ciertos componentes de las células contienen ADN. Éstos incluyen los cuerpos citoplasmáticos denominados mitocondrias (los productores de energía de la célula), y los cloroplastos de las plantas, en los que tiene lugar la fotosíntesis. Estos cuerpos se autorreproducen. El ADN se replica de manera similar al del núcleo, y algunas veces su código se transcribe y se traduce en proteínas. En 1981 se determinó la secuencia completa de nucleótidos del ADN de una mitocondria. En apariencia, la mitocondria utiliza un código que difiere muy poco del utilizado por el núcleo.
Los caracteres determinados por el ADN citoplasmático se heredan con más frecuencia a través de la madre que del padre (exclusivamente a través de la madre en el caso del Homo sapiens), ya que los espermatozoides y el polen contienen por lo general menos material citoplasmático que el óvulo. Algunos casos de herencia materna aparente están, en realidad, relacionados con la transmisión de virus de la madre al hijo a través del citoplasma del óvulo.

HERENCIA CUANTITATIVA
Los caracteres que se expresan como variaciones en cantidad o extensión, como el peso, la talla o el grado de pigmentación, suelen depender de muchos genes, así como de las influencias del medio. Con frecuencia, los efectos de genes distintos parecen ser aditivos, es decir, parece que cada gen produce un pequeño incremento o descenso independiente de los otros genes. Por ejemplo, la altura de una planta puede estar determinada por una serie de cuatro genes: A, B, C y D. Supongamos que cuando su genotipo es aabbccdd, la planta alcanza una altura media de 25 cm, y que cada sustitución por un par de alelos dominantes aumenta la altura media en unos 10 centímetros. En el caso de una planta que es AABBccdd su altura será de 45 cm, y en aquella que es AABBCCDD será de 65 centímetros. En realidad, los resultados no suelen ser tan regulares. Genes diferentes pueden contribuir de forma distinta a la medida total, y ciertos genes pueden interactuar, de modo que la aportación de uno depende de la presencia de otro. La herencia de características cuantitativas que dependen de varios genes se denomina herencia poligénica. La combinación de influencias genéticas y del medio se conoce como herencia multifactorial.
EJEMPLOS DE CARACTERES DOMINANTES Y RECESIVOS EN LOS SERES HUMANOS
GENES DETERMINANTES DE CARACTERES TRIVIALES
GENES DETERMINANTES DE ENFERMEDADES O MALFORMACIONES
DOMINANTES
RECESIVOS
DOMINANTES
RECESIVOS
Lengua enrollable
Lengua no enrollable
Enanismo
Estatura normal
Rh +
Rh -
Braquidactilia
Dedos normales
Pelo rizado
Pelo liso
Corea de Huntington
Sin Corea de Huntington
Cabello oscuro
Cabello claro
Pigmentación normal
Albinismo
Ojos oscuros
Ojos claros
Coagulación normal de la sangre
Hemofilia
Labios gruesos
Labios finos
Visión normal
Daltonismo
Pestañas largas
Pestañas cortas
Oído normal
Sordomudez
Oreja con lóbulo
Oreja sin lóbulo
Polidactilia
N.º normal de dedos
Grupos sanguíneos Ay B
Grupo sanguíneo O
Visión normal
Ceguera para los colores


VARIABILIDAD HUMANA
En la Tierra hay más de 6000 millones de personas, y no existen dos que sean exactamente iguales. Las diferencias se deben a la combinación de dos factores: los genes y el ambiente.
- Los genes se transmiten de padres a hijos, y cada uno hereda un conjunto de genes únicos, excepto los gemelos univitelinos.
- Por ambiente entendemos el conjunto de condiciones en las que se desarrolla nuestra vida, como la alimentación, el clima, etcétera.
La variabilidad de los seres vivos viene determinada por los genes, el ambiente o una combinación de ambos. Así, tu masa, por ejemplo, depende de los genes, pero también depende de tu dieta. La variabilidad puede ser continua o discontinua.
Variabilidad continua: Está determinada por la acción conjunta de los genes heredados y la modulación del ambiente, y su representación gráfica es una curva de distribución normal. Estudios realizados con gemelos univitelinos muestran que personas con características genéticas idénticas pueden desarrollarlas de forma diferente según el ambiente en el que han vivido.
Existen ciertos casos de variación continua en los que el ambiente no influye y se deben únicamente al genotipo. Se trata de caracteres que dependen de la acción conjunta de varios genes, como el color de la piel humana. En este caso se producen interacciones entre los distintos pares de genes que controlan el carácter y generan un gradiente de color en la población.
Variabilidad discontinua: Está controlada por los genes, pero no existe influencia del ambiente.
El grupo sanguíneo, el factor Rh, la lengua enrollable o la determinación del sexo son ejemplos de este tipo de variabilidad, que no muestra estados intermedios. No existe, por tanto, una distribución normal de estos caracteres en una población



EL GENOMA HUMANO
En febrero de 2001, todos los medios de comunicación anunciaron que ya se disponía del primer borrador del genoma humano, gracias a los esfuerzos de un proyecto público y de otro privado. Pero ¿qué es el genoma humano?
Los cromosomas están constituidos por ADN y proteínas, con una estructura de bases que se van repitiendo y alternando hasta llegar, en la especie humana, a un número aproximado de 3.000 millones.
El genoma humano es la secuencia completa del ADN, es decir, la lista de los 3.000 millones de nucleótidos que se encuentran dentro de cada una de nuestras células.
La función del ADN es aportar información para que la célula fabrique proteínas. Cada fragmento de ADN que codifica una proteína es un gen.
Aunque ya se ha secuenciado totalmente el genoma de otros organismos, como bacterias, levaduras, insectos, gusanos o el arroz, el Proyecto Genoma Humano ha supuesto un gran avance, pues nuestro genoma es 25 veces más grande que el de cualquier otro organismo ya conocido.
Como datos sorprendentes desvelados por este primer borrador cabe destacar que el número de genes humaos se cifra en unos 31.000, muy inferior al que se calculaba, y que los genes encargados de fabricar proteínas suponen realmente el 1,5 % de todo el ADN. Se ha comprobado también que las diferencias del genoma entre las personas es del 0,1 %, lo que significa que el 99,9 % restante es idéntico.
El conocimiento del genoma humano plantea, sin embargo, un gran número de incógnitas, como, por ejemplo, cuál es la función de esos 31.000 genes, cómo construyen y mantienen nuestro organismo, de qué forma causan las enfermedades, etc. Este es el momento de entender cómo funciona cada uno de nuestros genes, qué proteína se sintetiza con su información y cuál es la función de esta proteína.

viernes, 28 de noviembre de 2008

El ADN y El ARN


El ADN: Acido Desoxirribonucleico


El ácido desoxirribonucleico(polímero de unidades menores denominados nucleótidos) junto con el ácido ribonucleico, constituye la porción prostética de los nucleoproteidos, cuyo nombre tiene un contexto histórico, ya que se descubrieron en el núcleo de la célula. Se trata de una molécula de gran peso molecular (macromolécula) que está constituida por tres sustancias distintas: ácido fosfórico, un monosacárido aldehídico del tipo pentosa (la desoxirribosa), y una base nitrogenada cíclica que puede ser púrica (adenina ocitosina) o pirimidínica (timina o guanina). La unión de la base nitrogenada (citosina, adenina, guanina o timina) con la pentosa (desoxirribosa) forma un nucleósido; éste, uniéndose al ácido fosfórico, nos da un nucleótido; la unión de los nucleótidos entre sí en enlace diester nos da el polinucleótido, en este caso el ácido desoxirribonucleico. Las bases nitrogenadas se hallan en relación molecular 1:1, la relación adenina + timina / guanina + citosina es de valor constante para cada especie animal. Estructuralmente la molécula de ADN se presente en forma de dos cadenas helicoidales arrolladas alrededor de un mismo eje (imaginario); las cadenas están unidas entre sí por las bases que la hacen en pares. Los apareamientos son siempre adenina-timina y citosina-guanina. El ADN es la base de la herencia.
2. Replicacion Del ADN
Es la capacidad que tiene el ADN de hacer copias o réplicas de su molécula. Este proceso es fundamental para la transferencia de la información genética de generación en generación. Las moléculas se replican de un modo semiconservativo. La doble hélice se separa y cada una de las cadenas sirve de molde para la síntesis de una nueva cadena complementaria. El resultado final son dos moléculas idénticas a la original.

3. Clases de ADN
El ADN es por lo común el constituyente básico de la cromatina (cromosoma) nuclear en las células eucarióticas, pero también existe en pequeña cantidad en las mitocondrias y cloroplastos. En los procariontes forma el nucloide (que a diferencia de los eucariontes no va asociado a proteínas, es desnudo) y en los virus (DNAvirus)que lo poseen constituyen el virión o elemento infestante. Por lo común su estructura tridimensional posee giro hacia la derecha (ß-ADN,dextrogiro) que es la forma más estable y ocasionalmente posee giro hacia la izquierda (z-ADN,levógiro) Acorde a las evidencias, sólo una pequeña parte del ADN constituye genes (menos del 10 %). Existen diferentes tipos que los podemos dividir en: -ADN de copia única(el 57 % del total) formados por segmentos de aproximadamente 1000 pares de nucleótidos del longitud, una pequeña parte de este ADN contiene los genes. -ADN repetitivo(20 %)son unidades de aproximadamente 300 pares de nucleótidos* que se repiten en el genoma unas 105 veces(unidades de repetición). Se intercalan con el ADN de copia única. -ADN satélite(altamente repetitivo: 28 %)son unidades cortas de pares de nucleótidos que se repiten en el genomio. Son característicos en cada especie y pueden ser separados por centrifugación. Constituyen la heterocromatina y no se le conoce función. Los porcentajes indicados son del hombre y el ratón, y las proporciones serían las mismas en otras especies. Nucleótido*: Es una molécula compleja formado por una base nitrogenada, un hidrato de carbono y un grupo fosfato (ácido fosfórico inorgánico), unidos entre sí por enlaces covalentes.Las bases nitrogenadas son anillos heterocíclicos compuesto además del carbono e hidrógeno por nitrógeno. Son de dos tipos fundamentales, las bases púricas (por ser derivadas de la purina, de dos anillos heterocíclicos) y las bases pirimídicas (por ser derivadas de la pirimidina de un solo anillo). Dichas bases son cinco, pero en realidad solamente cuatro aparecen en el ADN. Las bases púricas presentes son la adenina y guanina. Las bases pirimídicas son la citosina y la timina (el uracilo es característico del ARN). Si bien para la constitución del ADN se unifica a un solo grupo fosfato, existen en las células una serie de nucleótidos desingular importancia en el metabolismo celular. Estos producen enlaces muy ricos de energía y los di- y tri- nucleótidos como el adenosin-tri-fosfato(ATP) son los encargados de muchos procesos metabólicos. Debe contener información útil biológicamente y que pueda trasmitirse sin alteraciones. Por lo tanto debe permitir su duplicación para permitir el paso de célula a célula y de generación en generación. Por otra parte debe ser capaz de producir materia viva(proteínas) a partir de dicha información. Y deberá ser capaz de variar ocasionalmente, para favorecer los cambios evolutivos y de adaptación.La función principal del ADN es mantener a través de una sistema de claves (código genético) la información necesaria para que las células hijas sean idénticas a las progenitoras (información genética). Este proceso se almacena en la secuencia de las bases (aparentemente aleatoria), que tiene una disposición que es copiada al ARNm (traducción) para que en el ribosoma sintetice determinada proteína. Este proceso es también denominado "dogma central de la biología molecular". Por medio de los mecanismos de recombinación y mutaciones se obtienen las variaciones necesarias para adaptaciones y evoluciones. El núcleo dirige las actividades de la célula y en él tienen lugar procesos tan importantes como la autoduplicación del ADN o replicación, antes de comenzar la división celular, y la trascripción o producción de los distintos tipos de ARN, que servirán para la síntesis de proteínas. Como puede verse en estos últimos dibujos, en una secuencia que va desde el ADN hasta el cromosoma.
El número 1 corresponde a la molécula de ADN,
En el número 2 , vemos el ADN unido a proteínas globulares, formando una estructura denominada "collar de perlas", formado por la repetición de unas unidades que son los "núcleosomas", que corresponderían a cada perla del collar.
En el número 3 se pasa a una estructura de orden superior formando un "solenoide".
En el número 4, se consigue aumentar el empaquetamiento, formando la fibra de cromatina, nuevos "bucles".
En el número 5, llegamos al grado de mayor espiralización y compactación, formando un denso paquete de cromatina, que es en realidad, un cromosoma.

4. Nucleosomas
Son unidades repetitivas formadas por un octámero de histonas (H2A, H2B, H3 y H4, dos de cada una), a manera de esferas aplanadas de 10 NM, alrededor del cual se arrolla una porción de ADN de 140 pares de bases en dos vueltas y sellados por fuera con la H1 en correspondencia con 60 pares de bases más, que actúan como un puente a otros núcleosomas. Esto hace que a la microscopía electrónica, por la digestión de ácidos débiles(se desprende la H1)se observen una estructura semejante a cuentas de un collar.
El ADN, que el de una célula humana totalmente desenrollado es de 2 mts aproximadamente de longitud, sufre con esta estructura un empaquetamiento de 5 a 7 veces de su longitud.
Las células eucarióticas, que son la unidad anatomofuncional de la vida, se hallan constituidas por una membrana plasmática, un citoplasma y un núcleo. Obviando las diferencias entre las células animales y vegetales, en el citoplasma se encuentran los organoides que son elementos necesarios para el desarrollo, y mantenimiento celular: el retículo endoplásmico y citoesqueleto como estructura interna; el aparato de Golgi como elemento organizador de secreciones celulares; los lisosomas para la digestión sustancias alimenticias y extrañas; las mitocondrias y cloroplastos como transductores de energía y los ribosomas como sintetizadores de proteínas. En su interior encontramos el núcleo, órgano responsable de la información celular, y por lo tanto de nuestro interés. De forma en relación con la de la célula que lo contiene, puede haber uno o varios en cada una. Y con tamaño variable tiene una relación equilibrada con el citoplasma (Índice núcleo plasmático). Constituido por una membrana nuclear, doble que lo rodea y horadada por poros grandes(150 Å) para el paso selectivo de los ARNm. En su interior existe un coloide semejante al del citoplasma (núcleo plasma o carioplasma). Existe un cuerpo muy denso(a veces doble o triple), que no posee membrana, el nucleolo constituido especialmente por fosfoproteínas y ARN. En el Microscopio Electrónico, se reconocen dos partes: una zona granular, formada por gránulos y una zona fibrilar, de finas fibrillas. Ambas zonas son de ribonucleoproteínas. Durante la mitosis desaparece y luego se forma a partir del organizador nucleolar, durante la telofase y se mantiene en la interfase. La región del cromosoma que corresponde al organizador nucleolar posee los genes que codifican los ARNr solubles. La zona fibrilar corresponde a la presencia de ARNr y ARNt y la zona granular contiene precursores ribosómicos. El elemento distintivo del núcleo es un cuerpo que aparece durante la interfase tiñéndose intensamente con los colorantes básicos(ej. hematoxilina) que se lo denominó cromatina(de cromos, color).La cromatina nuclear se halla durante la interfase en dos estados: la eucromatina, que constituiría al ADN funcional (en replicación o trascripción) y que con coloraciones normales se tiñe débilmente(forma laxa) y la heterocromatina, de ADN sin actividad y que se colorea intensamente(forma densa). Durante la división celular se reorganiza en cuerpos bastoniformes característicos llamados CROMOSOMAS. La cromatina esta constituida por ADN y proteínas. La cantidad total de ADN es constante para las células diploides de cada especie(valor C), por ejemplo la Drosophíla tiene 40 veces mas que la Escherichia coli(bacteria).Los vertebrados poseen cerca de 3 picogramos(pg), unas 700 veces mas que la E. coli. El hombre 2,87 pg y la salamandra (Amphiuma) 84 pg.La molécula de ADN está constituida por dos largas cadenas de nucleótidos unidas entre sí formando una doble hélice. Las dos cadenas de nucleótidos que constituyen una molécula de ADN, se mantienen unidas entre sí porque se forman enlaces entre las bases nitrogenadas de ambas cadenas que quedan enfrentadas. La unión de las bases se realiza mediante puentes de hidrógeno, y este apareamiento está condicionado químicamente de forma que la adenina (A) sólo se puede unir con la timina (T) y la guanina (G) con la citosina (C).La estructura de un determinado ADN está definida por la "secuencia" de las bases nitrogenadas en la cadena de nucleótidos, residiendo precisamente en esta secuencia de bases la información genética del ADN. El orden en el que aparecen las cuatro bases a lo largo de una cadena en el ADN es, por tanto, crítico para la célula, ya que este orden es el que constituye las instrucciones del programa genético de los organismos. Conocer esta secuencia de bases, es decir, secuenciar un ADN equivale a descifrar su mensaje genético.
5. Mitosis
Es la división celular que consiste en que a partir de una célula se obtienen 2 células hijas, genéticamente idénticas a la madre. Se produce en cualquier célula eucarionte, ya sea diploide o haploide y como mantiene invariable el número de cromosomas, las células hijas resultarán diploides, si la madre era diploide o haploide. La división del citoplasma se llama citocinesis, y la división del núcleo, cariocinesis. Algunas células no realizan mitosis y permanecen en un estado interfásico, pero otras la realizan frecuentemente (células embrionarias, células de zonas de crecimiento, células de tejidos sujetos a desgaste.).Función: crecimiento y desarrollo del organismo multicelular, y la regeneración de tejidos expuestos a destrucción de células. En unicelulares, cumple la función de reproducción asexual.Cada mitosis está precedida por una interfase, donde se produce la duplicación del material genético. Actúa como un mecanismo que asegura que cada célula hija reciba la misma información genética.Etapas: Profase, Pro metafase, Metafase, Anafase y Telofase.Resultado de una división mitótica es la obtención de células hijas(2) con igual carga cromosómica, o sea, de una célula diploide con su carga cromosómica diplode se obtienen dos células hijas también diploides. Siguiendo el principio de que los cromosomas hermanos(homólogos) no pueden ir a un mismo polo se distribuyen aleatoramente.
6. Núcleo CelularEs un corpúsculo contenido en el citoplasma de las células animales y vegetales, que contiene los cromosomas y es centro de información que dirige la síntesis proteica . Su forma es variable (redondo, oval o elíptico, etc.), su volumen es relativo (pero la relación núcleo-citoplasma es constante); ocupa una posición central en la célula (en general), pero puede estar situado parietalmente. En todas las células existe un núcleo, pero también hay células binucleadas y plurinucleadas. El núcleo se halla rodeado por una membrana nuclear atravesada por poros. Los núcleos presentan un doble aspecto según se hallen en reposo o en etapa de división celular. En período de reposo se observan en su interior nucleolos. Su composición química es compleja (proteínas, lípidos, compuestos inorgánicos, ADN, ARN, protaminas e histonas).En su interior se encuentra los cromosomas, que contienen el material genético responsable del funcionamiento celular y de la transmisión de los caracteres que se heredan.
El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado núcleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre núcleoplasma y citoplasma. El núcleo es un orgánulo característico de las células eucariota. El material genético de la célula se encuentra dentro del núcleo en forma de cromatina.
7. El ARN: Otro Acido Importante
Este ácido, al igual que el ADN, está compuesto por tres sustancias: ácido fosfórico, un monosacárido del tipo pentosa (la ribosa) y una base nitrogenada cíclica que puede ser púrica (uracilo) o pirimidínica (adenina o citosina). La unión de la base nitrogenada con la pentosa forma un nucleósido, el cual al unirse con el ácido fosfórico da un nucleótido; la unión entre sí en enlace diester da el polinucleótido, en este caso el ácido ribonucleico. En algunos virus el ARN es el material de la herencia y experimenta autoduplicación; pero básicamente se encuentra en los ribosomas (ácido ribonucleico ribosómico) y como ácido de transferencia y mensajero.
Dos Grandes Grupos De CelulasExisten dos tipos de células: las procariotas, que se encuentran en los organismos agrupados en el reino Moneras (bacterias) y se caracterizan, sobre todo, por la ausencia de un núcleo, es decir, no poseen una membrana nuclear que encierre la información genética de la célula, y las células eucariota, que están presentes en todos los seres vivos, excepto en las bacterias, y poseen un núcleo verdadero. Además de la membrana nuclear, las células eucariota poseen compartimientos y sistemas de transportes internos, formados por una compleja red de membranas.